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We consider the problem of three interacting resonant waves with arbitrary (non- 
conservative) nonlinear coupling. Such coupling arises naturally in the interaction of 
waves on shear flows, and in interactions between interfacial and gravity waves. We 
focus on the case where two modes are damped and have identical properties, and the 
third is linearly unstable. When the damping rates dominate the growth rate, the 
dynamics evolves on two disparate timescales and it is then possible to reduce the 
system to a multi-modal one-dimensional map, thus revealing clearly the complex 
sequence of bifurcations that occurs as the parameters are varied. We also investigate 
the effect on the equations of small additive noise ; this can be simply modelled by 
a (deterministic) perturbation to the map. It is shown that even at  very low levels, 
the effect of noise can be extremely important in determining the period and 
amplitude of the oscillations. 

1. Introduction 
The nonlinear development of wavelike instabilities of fluid flows depends 

critically on whether there are resonant couplings between modes with different 
spatial wavenumbers and frequencies (Weiland & Wilhelmsson 1977 ; Phillips 1981 ; 
Craik 1985). While general symmetry considerations require that non-resonant 
interactions between modes (for example, through alterations to the mean flow) 
typically appear at  cubic order in the amplitude, resonant couplings can occur at 
quadratic order, and will thus dominate for small amplitudes. This is the case of 
three-wave resonance, which has generated an enormous literature in both the fields 
of fluid mechanics and plasma physics (see Craik 1985, and references therein). The 
majority of work has concentrated on the case where the quadratic interactions are 
conservative, and so do not affect the total energy of the flow. It is then natural (and 
indeed important) to ask, if one or more of the wave modes is linearly unstable, 
whether the presence of the quadratic interactions leads to bounded solutions even 
in the absence of cubic terms in the evolution equations. (Such a truncation of the 
full evolution equations can be justified when the moduli of all the linear growth 
and/or decay rates, and the amplitudes of the waves, are small.) It has been 
established that bounded solutions can certainly be found when just one of the three 
modes is unstable, and numerical studies in special cases have established that the 
dynamics is chaotic in certain parameter ranges (Wersinger, Finn & Ott  1980; 
Vyshkind & Rabinovich 1976). Hughes & Proctor (1990~)  considered the case where 
the two stable eigenvalues are equal and the unstable eigenvalue has much smaller 
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growth rate. The system may then be reduced to a one-dimensional map, thus 
allowing the bifurcation structure to be extensively studied. They also showed that 
a small amount of additive noise can make a profound difference to the solutions. 

Much less seems to  be known about the case when the quadratic interactions are 
not conservative. This can happen, for example, in waves on shear flows, where the 
dissipative effects of critical layers are important (Craik 1971 ; see also Craik 1985), 
and in interactions between surface and internal gravity waves (Craik 1968). Because 
the underlying interaction problem, in the absence of any linear growth or decay 
terms, has no simple Hamiltonian structure it is very hard to  make analytic progress. 
Neither are we aware of any numerical simulations, even in the symmetric case for 
which the two damped modes have identical properties, though Wang (1972) gives 
bounds on initial conditions for the solution to remain finite. Although the restriction 
to the symmetric case might seem special, i t  arises naturally in the contexts 
mentioned above, where the damped wave modes are of the same type (for example, 
in the shear flow problem the damped modes can be identified as two oblique waves 
making equal and opposite angles with the downstream direction). In the present 
paper we concentrate on i t  because of its relative simplicity; however, we have no 
reason to suppose that the complex transitions that we describe owe their existence 
solely to the symmetry. The study of the asymmetric problem presents an intriguing 
subject for future research. 

The case of equal decay rates has also attracted attention since the equations turn 
out t o  be identical t o  those describing the interaction between two Hopf bifurcations 
with 2:  1 resonance (Proctor & Hughes 1990). Knobloch & Proctor (1988) have 
investigated some aspects of the bifurcation structure, but did not conduct a 
systematic survey of parameter space ; nor did they detect any chaotic solutions. 

In  the present paper we investigate the symmetric problem, with general 
quadratic interactions, in the same parameter range as Hughes & Proctor (1990a). 
Ideally we would like to treat a more physically realistic problem in which a 
continuous band of frequencies and wavenumbers interact. This is a t  present beyond 
the reach of analysis, and a full numerical solution has not to  our knowledge been 
attempted. Our modelling of the effects of external noise can be considered as a first 
attempt to include the effects of the interaction with modes of nearby wavenumbers. 
A similar identification was made by Busse (1984) in his analysis of the 
Kuppers-Lortz instability of convection in a rotating layer. I n  what follows, we 
refrain from relating our results directly to  a particular wave-interaction problem 
since to do so would suggest that the results were relevant to that problem alone. In 
contrast, we want to  emphasize the universality of our work, and its applicability to 
many problems exhibiting similar symmetries. Such an approach has proved 
immensely fruitful in related fields, by emphasizing that the underlying symmetries 
of the problem have a profound effect on the bifurcation structure, while the 
influence of the physics can be reduced to the selection of particular cases (see e.g. 
Crawford & Knobloch 1991). Nonetheless, we shall attempt at every turn to  relate 
the sometimes rather abstract results of our calculations to their manifestations in 
a real fluid. 

It is now supposed that the basic flow state on which the waves occur is 
homogeneous in space and steady in time. Then any disturbance to this state can be 
decomposed into Fourier modes. We begin our analysis by assuming that the spatial 
resonance of the interacting modes is exact, while permitting a slight mismatch in the 
frequencies. Indeed, for the system with quadratic nonlinearities, the solutions blow 
up in finite time when the resonance is exact (McDougall & Craik 1991). Thus, if the 
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three disturbances are given by Cjexp(i(k,-x-wjt)), j = 1, 2, 3, where the Cj are 
complex amplitudes then 

k, = k,+k,; (ol = w,+w,+A, (1 .1)  

and the evolution equations are 

C, = r, C, + A ,  C, C, exp (iAt), ( 1 . 2 ~ )  

6 2 . 3  = - r, C,, , - A ,  C, C:, , exp ( - ibt), (1.2b) 

where the r, are both supposed positive and the A, are arbitrary non-zero complex 
constants. The substitution 

ci =AiexP(iAt)/Ai, c2.3 =A2,3/(1AiA21)', (1.3) 
simplifies (1.2) to 

A,  = (r,-iA)A,+A,A3ei@, ( 1 . 4 ~ )  

'2.3 = - r 2 A 2 , 3 - A t , 2 A 1 >  (1.4b) 

where @ = arg (A ,  A,)  is an arbitrary real constant. It is readily shown that 
A2+A3eiA exponentially, for some constant real A, and that we may therefore 
identify A ,  and A ,  (after an appropriate shift in the origin of x). The further 
substitution 

X=F;1JA,Jcosq5, Y=r';'JA,Jsinq5, Z =Tl2JA2I2, (1.5) 

where q5 = arg (A, )  - 2 arg (A, )  (see, for example, Vyshkind & Rabinovich 1976), 
leads to the system 

x = yx+ SY- 2Y2 +z cos @, ( 1 . 6 ~ )  

Y =  ~ Y - ~ X + ~ X Y + Z S ~ ~ @ ,  (1.6b) 

2 = -2271 +X), ( 1 . 6 ~ )  

where time has been scaled with G1, y = r1/r2 and 6 = A/I' , .  
Though this reduction to three real equations is computationally convenient, i t  

undoubtedly obscures the relationship with the actual complex amplitudes. In what 
follows it must be borne in mind that both X and Y refer to the dominant (linearly 
unstable) A ,  mode, while 2 is a measure of the (squared) amplitude of the damped 
modes. 

In this paper we shall analyse equations (1.6) for the case of 0 < y < 1 .  Since the 
dynamics depends on S and @ only through their product we may, without loss of 
generality, restrict our attention to positive values of 6. When y is small, there are 
two timescales present in the dynamics. When 2 is negligible, so that only the A ,  
mode is present, evolution takes place on a slow (O(y))  timescale, while Z itself 
evolves a t  a rate independent of y.  We term these different types of dynamics the 
slow and fast phases, respectively. As we shall show below, it is possible to analyse 
the equations by matching together in a very simple way the behaviour in the two 
phases; it will emerge that the details of the bifurcation structure are independent 
of y when the latter is small, and thus the description of the dependence of the 
solutions on the parameters is greatly simplified. In addition, the slow phase can be 
described analytically, while in the fast phase the small O(y )  terms can be ignored, 
so that there are no stiffness problems with numerical computation. The techniques 
used are similar to those applied by Hughes & Proctor (1990a, b). The end result of 
the calculation is the reduction of the dynamics to that of a one-dimensional map, 
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representing the relation between extrema of the variable X. When @ = 0, equations 
(1.6) describe the case of conservative interactions. This special case has been 
extensively investigated in the case of small y by Hughes & Proctor (1990~) and we 
shall therefore concentrate here exclusively on non-zero values of 0. Preliminary 
results are contained in Proctor & Hughes (1990). 

In $2 we locate the fixed points of equations (1.6), consider their stability and 
briefly discuss the regimes where bounded solutions are to be found. In  $3  we describe 
how the solutions of equations (1.6) may be expressed in terms of a one-dimensional 
map relating certain minima of X. The map turns out to be multi-modal, with 
important implications for the existence and stability of multiple solutions occurring 
for the same parameter values. The properties of the map are discussed in $4 which 
also contains comparisons between solutions obtained directly from the map and 
those obtained by numerical solution of (1.6). 

Hughes & Proctor (1990~)  showed, for @ = 0, that for certain values of y and 6 the 
variable 2 could become exceedingly small and that in such cases the addition of a 
small amount of random noise to the 2 equation has a significant influence on the 
resulting solutions. The effect of such noise (which would certainly be present in a 
real fluid) was modelled by a straightforward change in the map. For non-zero @ 
similar behaviour persists - the influence of noise and the consequent changes to the 
map are discussed in $5. 

2. The fixed points and their stability 

Other fixed points of the system are located at 
The origin is obviously a fixed point of equations (1.6) and is unstable for y > 0. 

+ 0(Y2) y(2 +iSs") 
cos@(2-Stan@) 

x=-1, Y=BS+y 

and 
2cot@-8 

sin @ x = - 1 ,  Y=cot@+O(y),  z =  +W. 

(2.1 a )  

(2.1 b)  

Obviously @ must be non-zero for the second of these fixed points to exist. 
Furthermore, since 2 is positive by definition (see equation (1.5)) a necessary 
condition for the existence of both non-trivial fixed points when y is small is that 
cos @(2 - 6 tan @) > 0. The stability of these points may be found by examining the 
growth rates u of linearized disturbances. These are given as the roots of the cubic 

(2.2) 

where Y and 2 take their respective values from (2.la, b ) .  Analysis of this equation 
reveals that the fixed point (2.1 b)  is always unstable while the condition for the other 
fixed point ( 2 . 1 ~ )  to be stable is (correct to O(y) )  

[u( u - y )  + 22  cos @] (a - y + 2) = (S- 4Y) [u(2Y - 6) - 22  sin @I, 

2(4 - S2) 
S( 12 + 6 2 )  * 

2/S > tan@ > 

At the upper bound the fixed point ceases to exist; at  the lower bound it loses 
stability in a Hopf bifurcation. 

The fixed points of the reduced system (1.6) may be interpreted in terms of the 
amplitudes Al+z  as a travelling wave with constant phase speed. Figure 1 shows 
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FIGURE 1.  Wave patterns corresponding to the two fixed points given by (2.1 a, b )  for y = 0.1, 
S = 1 and (a) @ = 1, ( b )  @ = -0.2. 

contour plots of the spatial form of the waves for two different parameter values in 
the special case k, = ( i , O ) ,  k, = (i,:), k, = (i, -$) and w, = w 3 ;  the phase speed is 
then 2(w, + Y ) ,  with Y given by (2 .1 ) .  Other more complex solutions of (1.6) (periodic 
orbits, chaotic solutions) represent patterns that travel at non-uniform velocity and 
whose amplitudes vary in time (see $6) .  

When cos@ < 0, inspection of equations (1.6) reveals that the solutions are 
unbounded. As X decreases through negative values (X < - l ) ,  2 increases (from 
( 1 . 6 ~ ) )  and thereby accelerates the increase in 1x1 through ( 1 . 6 ~ ) .  Furthermore, for 
$ > cP > tan-' ( 2 / S ) ,  when the fixed point (2.1 a )  no longer exists, the solutions are 
unbounded, as indeed they are for -in < cP < QC for some (negative) GC dependent 
on S. Precisely where bounded solutions are to be found will be discussed in more 
detail later. Since our aim in the present paper is to describe solutions that can be 
obtained by neglecting cubic terms, we shall from now on only concern ourselves 
with @ in the region < @ < tan-l (2/S). 

3. Reduction to a one-dimensional map 
As described in $ 1 ,  when y is small the dynamics of (1.6) is conveniently treated 

by separating the episodes of fast and slow evolution and then joining them together 
to yield a one-dimensional map relating specific extrema of the variable X (cf. 
Hughes & Proctor 1990a). When describing the dynamics for non-zero @ (and in 
contrast to the case of @ = 0) it is best to deal first with the fast phase - this may end 
in one of three ways and it is instructive to consider these before tackling the slow 
phase. The fast phase is characterized by X, Y and Z being of order unity, and the 
terms involving y therefore being negligible ; unfortunately, except for the special 
case of @ = 0 it is not possible to obtain helpful analytic solutions of these equations. 
In  the slow phase, on the other hand, 2 is very small andX and Y evolve on an O(y-') 
timescale. An important feature is that when @ is non-zero the fast phase is not 
guaranteed to have bounded solutions; if 1x1 is too large (X  too negative) at the 
beginning of the fast phase then the trajectory escapes to infinity. Although it is not 
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possible to obtain a general expression for these critical values of X in terms of S and 
@, it  is possible to make considerable analytic headway for the case of small @; this 
is the topic of the following subsection. In $3.2 we study the fast phase in more detail 
when it is  bounded. It turns out that there are two possible endings of the bounded 
fast phase and that these have a marked influence on the slow phase that follows - 
this stage of the evolution is considered in $3.3.  A full discussion of the map that 
results from piecing together the fast and slow phases in contained is $4. 

3.1 The fast phase for small non-zero @ 

3.1. I .  The reduced equations 

The existence, for @ += 0, of the unstable fixed point (2.1 b )  suggests that the fast 
phase will not be attracting if the starting point is sufficiently far from the origin. 
Although no general theory is available, it is possible to make analytic progress when 
4 1 .  In this limit the fixed point ( 2 . l b )  has Z - 2cF2, Y - @-l, which suggests 

the following scalings : 

(3 .1)  
a a p1 = 8, x = e-lZ, y = s-18, Z = p g ,  - = 6-1- 
at at"' 

As mentioned above, since we are investigating the fast phase we would wish to be 
able to drop the terms in y. For consistency, then, we must require that y < 101 in 
all that follows. Substituting expressions (3 .1)  into equations (1 .6) ,  and dropping the 
tildes, we obtain, correct to O(e) ,  

x = -2Y2+Z+e6Y,  

Y = 2 X Y + s (  -GXfZ), 

i = - 2 x z - 2 e 2 ,  

( 3 . 2 ~ )  

(3 .2b)  

( 3 . 2 ~ )  

where the sign in (3 .2b)  is that of @. The resulting system is completely integrable 
for e = 0, with the conserved quantities 

E = X2+y2+Z, C = YZ.  (3 .3)  

It is easy to see that the surfaces E = constant, C = constant intersect in closed 
curves so that the orbits are periodic. When e =I= 0 then trajectories will no longer be 
periodic and E and C will evolve slowly according to 

E = €( ) 2 Y Z - 2 2 ) ,  

c = € ( - 6 X Z ) 2 2 - 2 Y Z ) .  

( 3 . 4 ~ )  

(3.4b) 

Applying standard averaging techniques and defining a slow time T = et, these 
become 

( 3 . 5 ~ )  

(3.5b) 

where the angle brackets indicate averages over the periodic orbit of the integrable 
system. The averages may be calculated when e = 0, giving 

E ,  = ) 2C-  2 ( 2 ) ,  

c, = - 6 ( X Z )  & ( 2 2 )  - 2c, 

where 

and 

( X Z )  = - t ( i )  = 0 ;  

(Z2) = E ( Z )  - (X") - ( P Z ) ,  

( P Z )  = B(Z2) - B(XZ), 

(X") = -;(xi) = B<XZ). 
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Thus from (3.7), using (3.8) and (3.9), 

(2') = $ E ( Z ) .  (3.10) 

Using (3.6) and (3.10) in (3.5) we obtain finally 

ET = &2C-2(2), (3.1 1 a) 

c, = - 2 C & 9 ( 2 ) ,  (3.11b) 

where (2) is to be evaluated as a function of C and E .  It is interesting that 6 does 
not enter the analysis until O ( 2 ) .  Furthermore (3.11) is invariant under the 
transformation @ +. - @, E +. E, C+ - C, so that we may take @ > 0 in what follows. 
We emphasize, however, that this indifference to the sign of @ does not persist when 
I@/= O(1). 

3.1.2. Analysis of the reduced equations 

given in the Appendix. It is shown there that provided K = C2/E3 < &, 
The quantity (2) may be expressed in terms of elliptic integrals, the details being 

dh 
(2) = E (3.12) 

where h, and h, are the positive zeros of denominator. It is in fact easy to show, by 
the following arguments, that K must indeed be less than or equal to 4. From the 
definitions of E and C we obtain the following simple inequalities: 

E = (X2)+(J'9+(Z) 2 (P)+(Z) ,  ( 3 . 1 3 ~ )  

while c2 = (YZ)Z < (y") (22) .  (3.13b) 

Now from ( 3 . 2 ~ )  with 6 = 0, (2) = (2Y"), so that 

E 2 $(Z), C2 < g<Z) (2') = @(Z)', (3.14) 

giving C2 < 4E3/27 as required. For points on the boundary of the domain, equality 
must hold, so E = $(Z), C2 = $?3(Z)2. There is thus a fixed point when (2) = C = 2, 
E = 3, corresponding (in the limit @ + O )  to the fixed point (2.lb) of the full 
equations. It may also be checked that when C2 = 4E3/27, 

2CCT ='$!PET = gCE2-4C2, (3.15) 

so that the boundary is in fact a trajectory of the system (3.1 1). If C > 2, E > 3 then 
C and E increase, while if 0 < C < 2, E < 3 or C < 0 then (C( and (El both decrease 
along the boundary. 

Other trajectories of the system must be found by evaluating the integrals 
numerically and then integrating equations (3.11) by a time-stepping procedure. The 
results are shown in figure 2. Note that trajectories in C < 0 all approach the axis 
C = 0. This appears to be a singular line, but since, for small K and fixed E, 
(2) - l/(lnCI i t  is in fact reached in a finite time. The ordering breaks down near 
C = 0 and the small terms act to move C into the right-hand half plane. The dynamics 
for C > 0 depends on whether the trajectory lies above or below the separatrix that 
joins the E-axis to the fixed point C = 2, E = 3. This curve intersects the E-axis at 
E = E ,  x 4.41. Below the separatrix all trajectories tend to the origin, while above 
it solutions initially decrease in amplitude, but eventually escape to infinity. Figure 2 
shows that if E < 3 initially, then the solution remains bounded for any initial C, 
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-3  -2  - 1  0 I 2 3 
C 

FIGURE 2. E versus C for the reduced system (3.11) with Qi > 0. The dashed line is the curve 
0 = 4E3/27 .  The fixed point (2, 3) and the separatrix curve are also shown. 

while if we consider small starting values of C, such as will occur at  the end of the 
slow phase, then E can be as large as E ,  without provoking runaway. In terms of the 
original variables this means that the boundary of runaway occurs when X 2  + y2 + 2 
is O(@-2). 

As @ increases, the solutions are only bounded if the initial values are within a 
diminishing neighbourhood of the origin. We have not investigated these restrictions 
for general @; when cos@ < 0 the solutions are unbounded, as noted in $2, and in 
this case cubic terms will be required to produce bounded solutions. The above 
analysis demonstrates, however, that cubic terms are certainly not necessary for a 
range of values of the parameters. 

3.2. The attracting fast phase 
The analysis of the previous subsection showed that for small @, provided is not 
too large at the beginning of the fast phase, trajectories will be brought in towards 
the origin. The qualitative nature of this result holds also for larger values of @. Of 
course, the small @ analysis cannot predict the detailed nature of the fast phase - 
in particular, it says that bounded solutions are attracted to E = 0, C = 0. In this 
subsection we examine the fast phase, when bounded, in more detail, paying 
particular attention a8 to exactly how it finishes. We now return to the original 
scaling of equation (1,0) and dispense with the restriction that 1@1 4 1, which was in 
any case adopted in the last section only to permit analytical progress. Then at the 
end of the fast phase, which is governed by equations (1.6) with y = 0, E tends to an 
O( 1)  constant, E,  say, and C tends to zero - in other words X 2  + y2 -+El and 2 --f 0. 
The value of E ,  is of vital importance in determining the subsequent evolution. 

If El > is2 then X + X ,  where 0 > X, > - 1 and Y +is. This behaviour is identical 
to that which ocours when @ = 0, and the subsequent slow phase is readily treated 
(see $3.3). It is worth pointing out again that when Q, =+ 0, X, typically cannot be 
derived analytically but must be obtained from a numerical solution of (1.6) with 
y = 0. The fast phase is deemed to have ended when the variation of E becomes 
sufficiently small and, as an additional check, when 2 also is suitably small. (Our 
numerical integrations were performed until the ratio r of E at successive timesteps 
satisfied Ir- 11 c and until 2 < exp ( -200) - such an amazingly small value of 
2 may be obtained in numerical simulations by using In 2 instead of 2 as the third 
dependent variable.) 
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If, on the other hand, El < as2, then at the end of the fast phase trajectories do not 
tend to an invariant straight line, but tend instead to a circle that cannot intersect 
the line Y = $9. It is important to note that the fast phase can only end up with 
E ,  < as2 if @ is negative. At the end of the slow phase (see $3.3) Y is close to, but 
slightly greater than is. From (1.6 b )  it can then be seen that since 8 is always positive 
then only if sin @ (and hence @) is negative can the trajectory be pushed across the 
Y = line. The values of X and Y at the end of the fast phase become the starting 
point for the slow phase that follows. Not surprisingly, the evolution is rather 
different depending on whether El is greater or less than as2 - the details are 
contained in the following subsection. 

In terms of the fluid dynamical variables A,,  A ,  the fast phase represents the part 
of the cycle in which the linearly damped modes become significant and thus when 
the pattern deviates significantly from that of a uniform plane wave. These modes 
are destabilized only when the basic wave reaches a threshold amplitude, but they act 
to reduce the amplitude of the basic wave. It should be noted that in both the 
scenarios referred to above, the final amplitude a (X2 + y2)i settles down to a 
constant value; the distinction between them is that in the former the phase of the 
damped modes is locked to that of the basic mode while in the latter there is a 
running phase. 

3.3. The slow phase 
3.3.1. El > as2 

If the fast phase finishes with E ,  > as2 then the subsequent slow phase is identical 
to that when @ = 0;  we shall give a fairly brief, though self-contained, description 
below - full details may be found in Hughes & Proctor (1990~).  The slow phase starts 
with 8 small, Y x and X = X o  with 0 > X o  > - 1 .  Throughout this stage of slow 
evolution, which takes place on a long (O(y-l)) timescale, 8 remains negligible with 
X negative and hence Y close to $8. If we write Y = +3+yq then, to leading order, X 
and 7 evolve according to the equations: 

x = yx-$7, 
Tj = y+2Xq. 

( 3 . 1 6 ~ )  

(3.16b) 

Since X is negative and is evolving slowly it can be seen that 7 + - if/=, after a short 
initial transient, and hence from (3.16) X decreases according to the approximate 
equation 

x = Y(x+-g), (3.17) 

with 2 varying according to ( 1 . 6 ~ ) .  If X, and X, (8, and 8,) are the values of X ( 2 )  
at the beginning and end of the slow phase then these equations may be solved to 
give 

h ( l n  8 0  - In 8 1 )  = fF1) -f(Xo),  (3.18) 

(3.19) 

Now, on input to the slow phase 8 is of the order of some power of y. It then decreases 
to a minimum at X = - 1 and subsequently increases again as X continues to 
decrease. The slow phase is considered to end when the omitted 8 term in (3.17) 
becomes significant; this occurs when 8 = O(y). Hence, from (3.18), 

(3.20) 



592 D .  W. Hughes and M .  R .  E .  Proctor 

For negative X ,  f ( X )  increases from zero, reaches a maximum at X = - 1 and 
then decreases again. Thus if (3.20) is to be satisfied with X ,  + X ,  we must have 
0 > X ,  > - 1 and X, < - 1. To leading order (3.20) simply becomes 

f(X1) =f (Xo)  (Xl * Xo) .  (3.21) 

Expression (3.21) is a good approximation to (3.20) except when X ,  (and hence X , )  
is close to - 1 when the O(yl1n yl)  terms become important. When @ = 0, the fast 
phase brings trajectories close to the fixed point at  X = - 1 and it is imperative to 
derive a better approximation to the map in this region (see Hughes & Proctor 
1990a). For @ very small this is still true; however, for @ >, O(y) ,  the case we are 
studying here, the fast phase never ends close to the fixed point and (3.21) is of 
sufficient accuracy. 

3.3.2. E ,  < id2 
If El < $Y at the beginning of the slow phase then things are rather different. The 

variable E ( x X 2  + P, since 2 is small) evolves on the slow timescale y-l until Y 
becomes $3, the slowly spiralling trajectory hitting Y = t6 when X is very close to 
zero. From here onwards the slow phase behaves as described above, but in order to 
make use of (3.18), which determines the end of the slow phase, it is necessary to 
know the size of 2 when Y becomes id. 

A t  the end of the fast phase 2 is of the order of some power of y (as we shall see, 
we do not need to be any more accurate than this). Hence, from (1 ,6 ) ,  X and Y evolve 
according to the approximate equations 

8 = yX+&Y-2Y2, (3.22a) 
Y = yY-&X+2XY,  (3.22b) 

and hence E x -+2YY x 2yE. At the beginning of the slow phase E = El and 
at the transition point (Y  x $8, X x 0) E x is2. Thus the duration of this stage is 
T = (2y)-' In (a2/4E,) ; the concomitant decrease in 2 can then be calculated using 
( 1 . 6 ~ ) .  Since X is oscillating rapidly and symmetrically about X = 0 then, over a long 
timescale, equation ( 1 . 6 ~ )  may be approximated by 2 = - 2 2  and hence [lnZ] = 
[ - 2 t ] .  If 2 - y" at t = 0 (the start of the slow phase) then if 2 = 2, at t = T, to 
leading order we have 

yln2, = -1n(P/4El). (3.23) 

We now know the value of Z at the beginning of the usual slow phase where X and 
Y evolve according to (3.16). Hence from (3.18), using the fact that X, x 0, we have 

(3.24) 

We are now in a position to construct the map relating extrema of X attained at 
the end of successive slow phases. It should be noted that although Some computation 
is required, in order to determine the fast phase, a great saving is made on solving 
the full equations (1.6). In that case the majority of time is spent on integrating the 
equations during the slow phases - in the construction of the map it is precisely these 
portions that we can treat analytically. 

4. Description of the map 
It can be seen from the results of $ 3  that the maps we finally obtain, on com- 

bining the analytic results of the slow phase with the numerical calculations of 
the fast phase, are completely independent of y ,  depending only on 6 and @. (As 
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-1 -6 - 5  -4  - 3  -2 - 1  
x n  

FIGURE 3. Calculated map for 8 = 0.1, @ = 0.3 (full line) compared with results of numerical 
simulations of the 0.d.e.s. (1.6) with y = 

. .  

mentioned earlier, this condition is true provided that Q, 2 O(y)  - for Q, 6 O(y)  an 
additional analysis is needed, as described by Hughes &, Proctor 1990a for the case 
of Q, = 0.) As noted in $ 1, without loss of generality we may restrict attention to 
positive values of 6 but must consider both positive and negative values of @. 

The description of the map when @ is positive is relatively straightforward and so 
we shall consider this case first. Figure 3 shows the map obtained by plotting X,,, 
versus X,, where X, denotes the minimum of X obtained at  the end of the nth slow 
phase, for 6 = 0.1 and Q, = 0.3. The map terminates abruptly, at X = X, say, when, 
as explained in $3, the value of 1x1 at the end of the slow phase (beginning of the fast 
phase) is too large for the subsequent fast phase to be attracting and the trajectory 
escapes to infinity. The map takes on the form of a sequence of oscillations which 
decrease in amplitude as X decreases (when Q, is zero they are all of the same height). 
It can be seen that for the case depicted in figure 3 the right-most valley is attracting 
and that any trajectory started outside that range (but with X > X,) will rapidly be 
drawn into this region, where it will forever remain. Thus, provided the initial values 
of X, Y and 2 are not such as to cause the solution to become unbounded immediately 
then there is no possibility of this happening at a later time - indeed, this appears 
always to be true for positive @. Also shown on figure 3 are the minima of X at the 
end of the slow phases obtained from direct numerical solution of the ordinary 
differential equations (1.6) with y = It can be seen that agreement with the map 
is excellent, a fact that allows us to discuss the properties of the map in detail, 
confident that it is a good approximation to the full system (1,6). Furthermore we see 
verification of the prediction of the map that all trajectories will be confined to the 
right-most valley. 

As Q, is increased X, increases, as shown by the sequence of plots in figure 4, and 
the number of oscillations is reduced. Furthermore the valleys of the map become 
less deep-in consequence the map cuts the diagonal (X,,, =X,) with a small 
gradient (between - 1 and + 1) and the fixed point of the map (for X < - 1) becomes 
stable (see figure 4c) .  Recall that this fixed point of the map is not a fixed point of 
the differential equations, but corresponds to a periodic orbit. As @ is increased yet 
further this fixed point moves closer to the fixed point a t  X = - 1 (which is a fixed 
point of the 0.d.e.s (1.6), being given by ( 2 . 1 ~ ) )  until they meet. Stability is then 
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FIQURE 4. A sequence of maps for positive values of @ with 6 = 0.1 (a) @ = 0.5; ( b )  @ = 0.7; 
(c) @ = 1.0; (a!) @ = 1.45. As @ increases the cutoff value X, increases also. This leads to a stable 
fixed point (case (c)) which later collides with, and transfers stability to the origin (case (d)) .  

transferred to the fixed point at X = - 1, the value of @ at which this occurs being 
given by the lower bound in inequality (2.3). Then for a short range of @, with @ 
satisfying inequality (2.3), the fixed point at X = - 1 is stable (see figure 44. 
However, for @ 2 tan-l(2/6) there are no fixed points (see $2) and no bounded 
solutions of the 0.d.e.s (1.6). 
As 6 is increased for a given @ the undulations are pushed to the left until the entire 

map lies to the left of the diagonal and the fixed point at X = - 1 is stable. When @ 
and S are such that inequality (2.3) is satisfied then the fixed point at  - 1 remains 
stable. When S is increased above 2/tan @ then there is no map, all trajectories of the 
original differential equations being unbounded. 

The most striking feature of the maps illustrated in figures 3 and 4 is their multi- 
modality, the presence of multiple extrema in the map. One of the key characteristics 
of such maps is the possible existence of several different stable orbits for the same 
parameter values, each orbit being reached by a sequence of interactions starting 
from different extrema of the map (see MacKay & Tresser 1987 for the theory of 
bimodal (two-humped) maps, and Hughes & Proctor 1990a for the occurrence of 
such a map in a physical system). As we shall see shortly, when @ is negative such 
considerations are of tremendous importance ; for @ positive however, as illustrated 
by the maps of figure 4, we see that the behaviour is more straightforward. Orbits 
starting from any extremum are attracted into the right-most valley; the effective 
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map is therefore just single-humped and its properties are well known. As discussed 
above, the shape of the map is changed by varying @ or 6 (or a combination of the 
two). The clearest means of seeing the orbits that result as the map changes is to 
construct a bifurcation diagram by plotting a certain number of iterates of the map 
after any transient behaviour has died away. Figure 5 plots such iterates for a range 
of @ (both positive and negative) at  the fixed value of S = 0.5. 

When @ is negative the map displays more unusual properties. As discussed in 53, 
the quantity E ( = X2 + y2 + 2) may now become less than aS2 at the end of the fast 
phase, giving rise to an extended slow phase described by equation (3.24). When this 
occurs the valleys of the map become deeper, as shown by a comparison of (3.21) and 
(3.24), the equations describing the two types of slow phase. Furthermore, the 
valleys no longer decrease in depth monotonically with X. These features are 
displayed in figure 6 which plots the map for several negative values of @ for S = 0.5 
- the dashed portions of the curve denote those ranges of X for which the slow phase 
is protracted, described by (3.24). Now that valleys other than the right-most can dip 
below the diagonal there is the possibility of more than one stable periodic orbit for 
the same parameter values. This situations is illustrated in figure 6 ( a )  where S and 
@ are such that the minimum of the second valley lies on the line X,,, = X ,  at 
X x - 3.9. Obviously this extremum of the map is a stable (indeed superstable) fixed 
point. By contrast, an orbit starting from the right-hand minimum of the map is 
chaotic and can never reach the stable fixed point at  the bottom of the second valley 
- this is illustrated by the sequence of iterations shown in figure 6 (a ) .  Thus the nature 
of the solution depends crucially on the initial values of the variables. The influence 
of the second valley for @ = - 0.163 is clearly seen in figure 5 .  Reassuringly, we have 
been able to confirm that this behaviour is indeed possessed by the 0.d.e.s (1 .6) .  
Figure 7 (a,  b )  plots X versus time, determined from numerical solution of (1.6) with 
y = corresponding to the two possible orbits of figure 6 ( a ) .  From the fluid 
mechanics point of view, we can associate the appearance of additional attractors 
with the possibility of temporal intermittency. 

As @ is decreased below its value in figure 6 (a)  the valleys become deeper, with the 
consequence that orbits starting from the second minimum no longer remain in the 
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FIGURE 7. Plots of X versus time, determined from numerical solution of equations (1.6) with 
y = corresponding to the two possible orbits of figure 6 (a) .  (a)  corresponds to the fixed point of 
the map (the dark sections denote the extended slow phase in which X 2  + y2 varies slowly, but with 
X oscillating extremely rapidly) ; ( b )  shows the chaotic orbit associated with the right-most valley. 
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= -0.6; (c) @ = -0.37; ( d )  @ = -0.45. 

neighbourhood of that point but are instead attracted to the rightmost valley (figure 
6 b ) .  However, as @ is decreased yet further the third valley comes below the 
diagonal, thus introducing another superstable fixed point (figure 6c) .  We do not 
expect to find the (co-dimension 3) situation where there are three superstable orbits 
since the map depends only on the two parameters 6 and @. The relationship between 
the shape of the map and the value of @ is a complicated one when @ is negative. 
Further decreases in @ below its value in figure 6(c) eventually reduce the depth of 
the second and 'higher' valleys, leaving the rightmost valley the deepest (figure 6 4 .  

The deepening of the valleys for negative @ also has another significant 
consequence. As can be seen from figure 8, certain minima of the maps are less than 
the cutoff value Xf and, in such cases, an orbit through one of these minima will 
escape on the next iteration since the map has no image for that point. However, 
by no means all orbits will escape ; figures 8 (a ,  b )  illustrate that even for maps where 
escape is a possibility there exist bounded orbits which steer well clear of the deep 
valley. Thus we have the interesting feature that orbits from certain starting values 
will escape to infinity whereas orbits from others will remain bounded for all times. 
Furthermore, the boundary separating these two classes of starting values is 
complicated and parts of i t  are almost certainly of a fractal nature. Figure 9 plots an 
'escape diagram ' for a range of starting values of X and a range of @ - the different 
shades of grey reflect the time taken for the solution to escape from that particular 
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FIGURE 9. Grey-scale plot showing the tendency for solutions to escape; S = 0.7. The abscissa is the 
range of starting values plotted logarithmically from X = - 1 (on the left) to X = -3; the ordinate 
is the parameter @, plotted linearly, from CJ = -0.3 (at the top) to @ = -0.9. Each starting point 
is iterated up to 16 times: the white regions denote starting values whose iterates have not escaped 
in this time; the black region denotes points that escape immediately; the grey regions 
intermediate escape times. 

starting point, with the darkest shades denoting the most rapid escape. By 
construction, each region corresponding to escape in n iterations possesses a pre- 
image, corresponding to  escape in n + 1 iterations. This accounts for the self-similar 
nature of the structure in the horizontal direction. There are also two horizontal 
bands of note. I n  the upper band (-0.35 2 @ 2 -0.4) the second valley, but not the 
first, is deeper than the cutoff and allows escape (see Figure 8 c ) ;  the valley however 
is extremely narrow and thus relatively few orbits reach the bottom of the valley and 
escape. For @ in the interval -0.4 >, @ >, -0.43 none of the valleys of the map is 
deeper than the cut-off and there is no escape. For -0.43 2 @ 2 -0.48 trajectories 
can escape from the first (rightmost) valley ; furthermore, the map allows re-injection 
of trajectories back into the first valley from the left (see figure 8 d )  and thus produces 
a fairly complicated escape pattern. For @ 5 -0.48 solutions again escape from the 
first valley ; now however there is no re-injection of orbits and the escape pattern is 
more straightforward. This picture provides a clear illustration of the unpredictable 
nature of the effect of resonant terms in nonlinear wave interactions and shows how 
difficult i t  would be to  describe what is happening simply from repeated numerical 
simulations of the governing equations. It also makes plain the considerable 
advantages of reducing the system to a one-dimensional map. 

5. The influence of noise 
All physical systems are, to  some extent, affected by external disturbances or 

noise. Often, when the noise level is low, the effect is correspondingly small - the 
resultant behaviour is then only slightly modified from that in the absence of noise 
and there is no need to include the effect of noise in the governing equations. For the 
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example considered here, however, the situation is somewhat different, with a small 
(O(s ) )  amount of noise having a significant (O(1)) effect. 

In the absence of any noise, when the system is described by equations (1 .6) ,  orbits 
approach the invariant plane 2 = 0 very closely when y is small. If perturbations to 
the system act so as to ‘kick’ trajectories away from this plane then the value of 2 
at the beginning of the slow phase may be altered and, from (3.18), the value of X 
at the end of the slow phase will then be affected also. In order for O(s)  disturbances 
of 2 to have an O(1) effect on X it can be seen from (3.18) that y lns  should be O(1). 
Thus in the case of small y, the noise level of significance is truly tiny, being 
O(exp ( - l /y)) .  Since the key effect of any noise on the system is to perturb 2 we need 
only include additive noise in equation ( 1 . 6 ~ )  with (1.6a, 6 )  remaining unchanged. 
Recalling from (1.5) that 2 is a positive definite quantity we introduce a new variable 
W ,  with 2 = w2, and replace ( 1 . 6 ~ )  by 

(5.1) 

where h(t)  is some stationary random process with zero mean. The noise term will 
only be of significance during the slow phase, when (and hence 2) is small ; during 
the fast phase W is 0(1) and the noise may then be neglected. The most rigorous 
approach to the problem is to formulate a Fokker-Planck equation for the 
probability distribution of W during the slow phase, and hence for the value of X at 
the end of the slow phase (see Stone & Holmes 1990; Hughes & Proctor 19906). On 
combining the slow phase with the fast phase (where the noise is negligible) we may 
obtain a conditional probability distribution for the value of X at the end of the 
(n+l) th  slow phase given the value of the extremum at the end of the nth slow 
phase. In the limit of y + 0 this probability distribution becomes sharply peaked 
about the expected value of the extremum and it is then appropriate to incorporate 
the relation between the expected values of successive extrema into a modified 
version of the map described in $53 and 4. The Fokker-Planck analysis however is 
somewhat lengthy and so here we shall derive the amended map, taking into account 
the influence of noise, from the more heuristic approach of Hughes & Proctor 
( 1 9 9 0 ~ ) .  The two approaches do of course agree in the limit of small y. 

In the absence of noise the variable 2 initially decreases in the slow phase, reaching 
a minimum at X = - 1 before increasing as X decreases through - 1 .  To a first 
approximation the effect of additive noise in (5.1) is to prevent IHI from falling below 
the level of the noise, which we shall take to be O(a). Thus if, in the noise-free 
evolution, 2 2 O ( 2 )  the influence of the noise will be unimportant. On the other 
hand, if 2 < O ( 2 )  with no noise then the addition of noise will be significant; in 
particular, IFtI will be constantly perturbed so as to remain O(E)  for X > - 1 before 
growing as X decreases through - 1. The important feature is that IWl at the start 
of its growth phase is larger than in the absence of noise and consequently the value 
of 1x1 at the end of the slow phase, governed by (3.18), will be smaller. In  equation 
(3.18) we may thus take 2, = Ks2, X, = - 1 and 2, = O(y)  to yield the following 
expression for X,, the value of X at the end of the slow phase: 

F = - W( 1 + X )  + Eh(t), 

f(XJ -f( - 1)  = -a+ O(yllnyl), (5 .2)  

where a = yllnsl is assumed to be O(1). The precise value of the O(1) constant K is 
obviously immaterial. It can be seen from the above argument that to the first degree 
of approximation it is only the level of the noise that is important and not its 
distribution - in other words we do not need to take account of the exact form of the 
function h(t) in (5.1). 
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FIGURE 10. (a ,  b )  show maps flattened by the inclusion of noise; S = 0.5, @ = -0.2. (a )  a = 
-ylns = 1.0; ( b )  a = 0.1842. (c) plotsXversus time, calculated from the 0.d.e.s (1.6), with y = 
and E = corresponding to case (a). The mean maximum amplitude predicted from the map is 
marked as the dashed line. 

The prescription for incorporating the effects of noise into the map is thus 
straightforward. To a first approximation we may regard the modified map as 
deterministic even though it models the effects of noise on the differential equations. 
Numerical experiments do of course reveal fluctuations about the mean represented 
by the map but these appear to be of secondary importance and, in any case, their 
standard deviation becomes very small in the limit y --f 0 with yJln el fixed. A t  the end 
of the slow phase we choose the greater value of X between that given by (3.21) (or 
(3.24) if E ,  < $8') and that given by (5.2). As can be seen from figure lO(a) the result 
is that the valleys of the map now have a flat cutoff. Thus for given parameter values 
there will be some orbits that are influenced by noise - those sampling the flat regions 
-whilst there might be others that are restricted to the noise-free sections. (These 
latter orbits are not entirely unaffected by noise; for example, gaps may appear in 
period-doubling sequences (see Crutchfield, Farmer & Huberman 1982). However, 
such effects, while not covered by our approach, are small compared to the 
significant changes in trajectories resulting from the flattened map.) A small amount 
of external noise, represented by the modified map, thus leads to an entirely different 
bifurcation structure (see Proctor & Hughes 1991). If the noise is sufficiently large 
that the flat part of the map intersects the diagonal (see figure l o b ) ,  then the map has 
a stable fixed point and the system of 0.d.e.s has a (noisily) periodic orbit with 
amplitude controlled by the noise. Further increases in the noise level simply act to 
reduce the amplitude of the orbit. Thus the effect of additive noise is, somewhat 
counter-intuitively, to make the solutions more ordered. The flat sections of the map 
allow for periodic orbits with a large basin of attraction and, in consequence, many 
orbits that are chaotic in the absence of noise become (noisily) periodic. Further- 
more, the raising of the valley floors is a deterrent to escaping orbits and indeed, a 
sufficiently high level of noise will ensure that all orbits are constrained. 

Figure lO(c) shows the good agreement between the solution of the 0.d.e.s 
( (1 .6a,b) ,  (5.1)) and the mean amplitude predicted from the map; for computational 
purposes we take h(t)  in equation (5.1) to be normally distributed with standard 
deviation (dt); for a timestep dt, thus ensuring results independent of the timestep. 
As pointed out above, when y is small only a very slight amount of noise is needed 
to influence the solutions; for example if y = lo-' and u = 1 then e = exp ( -  100). 
Typically, when solving differential equations numerically, a greater level of noise 
than this will be introduced, albeit unwillingly, through rounding errors. For our 
particular problem, however, described by equations (1.6), we are fortunate in being 
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able to produce effectively noise-free solutions (as displayed in figure 7, for example) 
by working with the variable V = In 2 in ( 1 . 6 ~ )  and introducing V into (1.6a, b )  only 
when it is greater than some critical value. 

6. Discussion 
In this paper we have considered the interaction of three resonant waves, one 

linearly unstable and two equally damped, with non-conservative quadratic 
nonlinearities; to facilitate analytic progress we assumed the growth rate of the 
unstable mode to be very small in comparison with the damping of the other modes. 
Since the phenomenon of non-conservative three-wave resonance will arise in many 
situations where small-amplitude disturbances can exchange energy with a mean 
flow we have chosen to keep our discussion of a general nature rather than highlight 
any particular physical problem. Indeed, evaluating the coefficients r,, A,  in 
equation (1.2) for a given flow is by no means straightforward, as shown by Craik 
(1971) (see also Usher & Craik 1974) who derived equations for the resonant 
interaction between a two-dimensional wave C, and two oblique modes C,, imposed 
on a parallel shear flow. 

The reduction of the governing equations to a one-dimensional map relating 
certain extrema of X greatly clarifies the behaviour of the system. Forming iterates 
of the map for a range of parameter values leads to a bifurcation diagram of the form 
of figure 5 ;  certain features, such as the locations of periodic orbits and transitions 
to chaos are then readily found. Furthermore, consideration of the map allows us to 
state precisely how many stable solutions to expect for any given parameter values 
and also allows us to calculate rapidly whether given initial conditions will lead to a 
bounded solution. In  addition we have included the effects of a small amount of 
random noise in the equations by a suitable modification of the map. 

The change of variables (1.5) is important in that it reduces an ostensibly fourth- 
order system to the third-order system (1.6). However, to relate the results to wave 
interactions in fluids it is necessary to consider the modulus and phase of A, and A,. 
With the same choice of k, and w, as in figure 1 ,  the wave pattern viewed in a frame 
moving in the positive x-direction with speed 2w, takes the form 

f ( X , Y )  = lAllcos(x+A)+21A,I c o s ( g ~ + ~ , ) c ~ s ~ .  (6.1) 

For almost all the time is negligible ; the wave pattern is essentially planar and 
travels at  relative speed 6. The fast phase represents bursting behaviour of the 
oblique modes leading to a drastic alteration in the wave pattern. Two examples of 
the evolution of a burst are shown in figure 1 1 .  The imposition of noise reduces both 
the maximum amplitude of the bursts and the intervals between them. Of course in 
a real experiment the wave patterns would be much less regular, but we believe that 
the above calculations give a useful guide as to what might be observed. 

Finally we comment on the neglect of the cubic terms in the governing equations 
(1.6). Clearly, if the equations yield bounded solutions for all sufficiently small initial 
amplitudes then the neglect of small cubic terms (which preserve the invariance 
of the plane 2 = 0) is justified. This is the case for positive @, provided that 
tan@ < 216, and some negative values of @. However, for @ sufficiently large and 
negative we can achieve a situation like that depicted in figure 9 where certain 
starting values lead to bounded solutions whereas others escape to infinity. ‘Good’ 
and ‘ bad ’ starting values are interleaved in a complex manner ; yet in certain cases 
(e.g. @ = - 0.5 in figure 9) the good values dominate. In this circumstance one should 
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FIGURE 11. Snapshots of the wave patterns at  different stages in the evolution of a burst. 
y = S = 0.5 and (a )  @ = 0.2, ( b )  @ = -0.2. 

perhaps include cubic terms for a proper solution whilst recognizing that in many 
cases these will be redundant. The role of the quadratic terms in exchanging energy 
with the mean flow remains somewhat obscure. Indeed it can easily be shown that 
if all the linear growth/decay rates are zero then all solutions with Z + 0 blow up (for 
small enough 6) for small @ of either sign. Computations indicate that for finite Qi 
only negative values of @ lead to  a significant extraction of energy from the basic 
state and the blow up of initially small solutions. Clearly the mechanism by which 
this occurs is complicated, depending in a non-trivial manner on the phase 
relationship between the three modes. 

We are grateful to Trinity College, Cambridge and the Science and Engineering 
Research Council for financial support. 
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Appendix 

integrals, leading to the result (3.12). 
In this Appendix we explain how (2) may be expressed as a ratio of elliptic 

On making the substitution 

X = Eisinecos4, Y = EisinOsin4, Z = Ecos2e, (A 1 a-C) 

(A 2) 

From (3 .3) ,  C = YZ = &sin 8 cos2 8 sin 4 = constant and hence we may write (A 2) as 

(A 3) 

(A 4) 

we find that for 8 = 0, from (3.2c), 

2E0 sin 8 cos 9 = 2Ei sin 8 cos2 8 cos 4. 

20 sin 8 cos 8 = 2E4 sin 8 COS, 8[ 1 - K /  ( sin2 8 C O S ~  8)]i, 

1h1 = &(hz - h3 -K)i ,  

where K = C2/E3 = constant, Writing h = cos28, expression (A 3) becomes 

for h, < h < h,, where h, and h, are the positive zeros of the quantity in brackets. 
Then average of Z is given by 

which, on using (A l c ) ,  leads to the result (3.12). 
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